On symplectic fillings

نویسنده

  • John B Etnyre
چکیده

In this note we make several observations concerning symplectic fillings. In particular we show that a (strongly or weakly) semi-fillable contact structure is fillable and any filling embeds as a symplectic domain in a closed symplectic manifold. We also relate properties of the open book decomposition of a contact manifold to its possible fillings. These results are also useful in showing the contact Heegaard Floer invariant of a fillable contact structure does not vanish [28] and property P for knots [18]. AMS Classification 53D05, 53D10; 57M50

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tight Contact Structures with No Symplectic Fillings

We exhibit tight contact structures on 3-manifolds that do not admit any symplectic fillings.

متن کامل

Symplectic Cohomology for Stable Fillings

We discuss a generalisation of symplectic cohomology for symplectic manifolds which weakly fill their contact boundary and satisfy an additional stability condition. Furthermore, we develop a geometric setting for proving maximum principles for Floer trajectories, and prove a Moser-type result for weak fillings. This is a preliminary version of the paper.

متن کامل

Simple Singularities and Symplectic Fillings

It is proved that the diffeomorphism type of the minimal symplectic fillings of the link of a simple singularity is unique. In the proof, the uniqueness of the diffeomorphism type of CP 2 \D, where D is a pseudo holomorphic rational curve with one (2, 3)cusp, is discussed.

متن کامل

Explicit Concave Fillings of Contact Three-manifolds

When (M, ξ) is a contact 3-manifold we say that a compact symplectic 4-manifold (X,ω) is a concave filling of (M, ξ) ifM = −∂X and if there exists a Liouville vector field V defined on a neighborhood of M , transverse to M and pointing in to X , such that ξ is the kernel of ıV ω restricted toM . We give explicit, handleby-handle constructions of concave fillings of all closed, oriented, contact...

متن کامل

Symplectic, Poisson, and Contact Geometry on Scattering Manifolds

We introduce scattering-symplectic manifolds, manifolds with a type of minimally degenerate Poisson structure that is not too restrictive so as to have a large class of examples, yet restrictive enough for standard Poisson invariants to be computable. This paper will demonstrate the potential of the scattering symplectic setting. In particular, we construct scattering-symplectic spheres and sca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003